引用本文:
  • 施旭东,何涛,李敏,李丙瑞,刘思萌,谢玲玲.基于CMIP6数据的北极海冰未来分布和变化趋势分析[J].海洋开发与管理,2024,41(6):35-46    
【打印本页】 【下载PDF全文】 查看/发表评论关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 439次   下载 742 本文二维码信息
码上扫一扫!
基于CMIP6数据的北极海冰未来分布和变化趋势分析
施旭东,何涛,李敏,李丙瑞,刘思萌,谢玲玲
广东海洋大学近海海洋变化与灾害预警实验室;陆架及深远海气候资源与环境广东省高校重点实验室;自然资源部空间海洋遥感与应用重点实验室;上海市极地生命过程与环境重点实验室;极地生态与气候变化教育部重点实验室;中国极地研究中心
摘要:
文章基于第六次国际耦合模式比较计划(CMIP6)的情景模式比较子计划的4种强迫情景,利用6个模式的输出数据对北极海区海冰密集度和海冰厚度的未来空间分布和长期变化趋势进行分析,并结合海面气温分析了其对海冰变化的可能影响。结果表明,不同强迫情景下2030年、2040年和2050年北极大部分海域海冰密集度均超过50%,海冰厚度约为1.5 m左右,其中东格陵兰海、巴伦支海、喀拉海和楚科奇海部分海域海冰密集度和厚度相对较小。2015—2050年两者整体均呈现下降的特征,部分海区的海冰密集度在高强迫情景下每年降低最大可超1%。2050年高强迫情景的季节变化结果显示,大部分海区冬春季海冰密集度超过90%,且各月均呈现下降趋势。海冰厚度方面,冬春夏大部分海区海冰厚度超过1 m,而秋季大部分海区海冰厚度小于等于0.5 m。12月至翌年5月全域海冰厚度以减小为主,其余月份却出现小范围海冰厚度增加的区域。至2100年的长期变化趋势方面,北冰洋中心区、东格陵兰海和楚科奇海海冰密集度和海冰厚度均随时间增加而减小,其中北冰洋中心区减小速率最大,同时三个海区海面气温将在未来持续增温。此外,海面气温的空间分布和长期变化趋势均与海冰密集度间存在较明显的相反变化特征,说明了气温对海冰的可能影响。本研究可为未来北极海冰在不同的强迫情景下的变化特征提供一定的参考。
关键词:  CMIP6数据  海冰密集度  海冰厚度  海面气温  海冰变化
DOI:10.20016/j.cnki.hykfygl.2024.06.008
投稿时间:2024-06-06修订日期:2024-06-14
基金项目:国家重点研发计划(2022YFC3104805);自然资源部海洋环境信息保障技术重点实验室开放基金课题(B22209);上海市极地前沿科学研究基地开放课题基金(SOO2024-08);广东海洋大学博士科研启动经费项目(R20022);粤西热带海洋生态环境野外科学观测研究站项目(2024B1212040008);国防科技创新特区项目;广东省教育厅创新团队项目(2023KCXTD015);广东省冲一流专项资金项目(231419012,231919030).
Analysis of the Future Distribution and Trend of Arctic Sea Ice Using CMIP6 Data
SHI Xudong,HE Tao,LI Min,LI Bingrui,LIU Simeng,XIE Lingling
Laboratory of Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University;Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province; Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources;Laboratory of Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University;Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province; Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources; Shanghai Key Laboratory of Polar Life and Environment Sciences(Shanghai Jiao Tong University); Key Laboratory of Polar Ecosystem and Climate Change(Shanghai Jiao Tong University), Ministry of Education;Polar Research Institute of China
Abstract:
This study examines the future spatial distributions and long-term trends of the sea ice concentration (SIC) and the sea ice thickness (SIT) in the Arctic, along with the potential impacts of the Temperature at Surface (TAS), using the outputs of six models under four forcing scenarios of the Coupled Model Intercomparison Project Phase 6 (CMIP6). The results show that, under the four forcing scenarios, the SIC exceeds 50% and the SIT is approximately 1.5 m in most parts of the Arctic in 2030, 2040, and 2050. However, in the regions of East Greenland, the Barents Sea, the Kara Sea, and the Chukchi Sea, the SIC and SIT are comparatively lower and thinner. Both the SIC and the SIT exhibit declining trends during 2015—2050. Specifically, under the high-forcing scenario, the SIC in some regions decreases by over 1% per year. In 2050, under the high-forcing scenario, the SIC in most of the Arctic exceeds 90% during winter and spring months. The SIC reveals a decreasing trend in every month. The SIT exceeds 1 m from winter to summer in most regions, while it is less than or equal to 0.5 m in the fall. From December to May, the SIT exhibits a decreasing trend across the Arctic, with some localized increases observed in other months. Regarding the long-term trend up to 2100, the SIC and SIT in the Central Arctic, the East Greenland Sea, and the Chukchi Sea decrease over time, with the fastest reduction in the Central Arctic, meanwhile the TAS continues to rise in these three regions. Additionally, the spatial distribution and long-term trend between the TAS and the SIC are opposite, implying the possible impact of the TAS on the SIC. These findings provide valuable insights into the future sea ice in the Arctic under different forcing scenarios.
Key words:  CMIP6 data, Sea ice concentration, Sea ice thickness, Temperature at surface, Sea ice variability